
Fuzzing Loop Optimizations in
Compilers for C++ and
Data-Parallel Languages

Vsevolod Livinskii, University of Utah

Dmitry Babokin, Intel Corporation

John Regehr, University of Utah

June 19th, 2023

Importance of Testing Loop Optimizations

• Advancements in AI and ML fields

• New architectures with vector operations

• Complexity of loop optimizations
• SCEV and Polly in LLVM

2

Summary of Found Bugs

122 new errors in total

42% are wrong code bugs

• 66 bugs in GCC

• 32 wrong code, 31 ICE, 3 timeouts

• 28 bugs in LLVM

• 5 wrong code, 5 ICE

• 12 bugs in ISPC

• 5 wrong code, 7 ICE

• 16 bugs in Intel® oneAPI DPC++

compiler

• 9 wrong code, 7 ICE

• 2 bugs in Intel® SDE

• 2 bugs in Alive2

3

Research Contribution and Features

• New static Undefined Behavior avoidance for loops

• Target loop optimizations explicitly

• Support multiple C-family languages

4

Research Contribution and Features

• New static Undefined Behavior avoidance for loops

• Target loop optimizations explicitly

• Support multiple C-family languages

5

Undefined Behavior (UB)

include <stdio.h>

int main () {

int x = 1;

x = x++ + ++x;

printf ("%d\n", x);

return 0;

}

Who is wrong?

>$ icc test.cpp && ./a.out

5

>$ clang++ test.cpp && ./a.out

4

No one!

Program contains UB

6https://godbolt.org/z/dfETYae9T

https://godbolt.org/z/dfETYae9T

Static Undefined Behavior Avoidance

Based on concrete value tracking and rewrite rules

7

Rewrite

“Random testing for C and C++ compilers with YARPGen” contains more details

https://dl.acm.org/doi/pdf/10.1145/3428264

UB Avoidance for Loops

8

var_37 = 20;

var_43 = 99;

…

var_10 = (var_37 / 15) - var_43;
arr_37[20] = {20, 20, 20, ...};

var_43 = 99;

…

for (int i = 0; i < 19; ++i) {

arr_10[i] = (arr_37[i] / 15) - var_43;

}

arr_37[20] = {20, 20, 20, ...};
var_43 = 99;
…
arr_10[0] = (arr_37[0] / 15) - var_43;

driver.cpp

test.cpp

UB Avoidance for Loops

c[i] = a[i] + b[i];

No diversity at runtime!

c[i] = a[i] + b[i];

9

i 0 1 2 3

a 5 38 5 38

b 7 15 7 15

i 0 1 2 3

a 5 5 5 5

b 7 7 7 7

UB Avoidance for Loops

c[i] = a[i] + b[i];

No diversity at runtime!

c[i] = (i % 2 == zero) ?

(a[i] + b[i]]) :

(a[i] - b[i]);

10

i 0 1 2 3

a 5 INT_MAX 5 INT_MAX

b INT_MIN 15 INT_MIN 15

i 0 1 2 3

a 5 5 5 5

b 7 7 7 7

Research Contribution and Features

• New static Undefined Behavior avoidance for loops

• Target loop optimizations explicitly

• Support multiple C-family languages

11

Loop Generation Policies

• Cannot test optimizations that cannot trigger

• A total of 10 Loop Generation Policies
• 31 fine-grain control parameters

• Not mutually exclusive; compose gracefully
• Reduction + stencil: a += (b[i - 1] + b[i] + b[i + 1]) / 3;

12

Loop Sequence and Loop Fusion

for (i=0; i < (d ? e : 10); i++)

a[i] = c[i] + b[i];

for (j=0; j < (d ? e : 10); j++)

b[j] = b[j] * c[j];

for (i=0; i < (d ? e : 10); i++){

a[i] = c[i] + b[i];

b[i] = b[i] * c[i];

}

13

• Hard to generate purely at random

• Loop Sequence as first-class IR element for synchronized
decisions

Fuse

Array Access Patterns

Diagonal

a[i][i]

14

Slice

a[1][i]

Column-major

a[j][i]

• Relation between loop nest depth and dimensionality

• In-order or not

• Constant, iterator, iterator with offset

Stencils

for (int i = 1; i < n - 1; ++i)

out[i] = (in[i - 1] +

in[i] +

in[i + 1]) / 3;

.LBB0_2:

fadd d1, d0, d1

fmov d2, d0

ldr d0, [x9], #8

fmov d3, x10

subs x8, x8, #1

fadd d1, d1, d0

fmul d3, d1, d3

fmov d1, d2

str d3, [x1], #8

b.ne .LBB0_2

15

GVN in LLVM forwards values to

a subsequent loop iteration

Stencil as a pattern:

• arrays

• dimensions

• stride

• computations

Generation Policies Composition

for (int i = 0; i < a + b; i++) {

for (int j = 0; j < (c ? d : 10); j++)

e[i][j] = f[1][j][i] + f[2][i][i];

for (int k = 0; k < (c ? d : 10); k++)

g += (h[i][k - 1] + h[i][k] + h[i][k + 1]) / 3;

}

16

Research Contribution and Features

• New static Undefined Behavior avoidance for loops

• Target loop optimizations explicitly

• Support multiple C-family languages

17

Multi-language Support and IR Lowering

Matrix multiplication

𝑐𝑖𝑗 = ෍

𝑘=1

𝐾

𝑎𝑖𝑘𝑏𝑘𝑗 ; 𝑖 = 1,… ,𝑀 ; 𝑗 = 1,… , 𝑁

18

Multi-language Support and IR Lowering

C++

for (int i = 0; i < M; i++)

for (int j = 0; j < K; j++)

for (int k = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

ISPC

foreach (m = 0 ... M) {

for (k = 0; k < K; k++) {

sum = 0.0f;

for (n = 0; n < N; n++) {

aValue = a[m*N + n];

bValue = b[n*K + k];

sum += aValue * bValue;

}

c[m*K + k] = sum;

}

}

19

Multi-language Support and IR Lowering

Loop #1: i in [0, 10), step 2

If-then (d):

a[i] = b[i] ^ d

Else:

a[i] = b[i] & d

Loop #2: j in [0, 10), step 2

c[i] = b[j] + 134

for (int i = 0; i < 10; i += 2){

if (d)

a[i] = b[i] ^ d;

else

a[i] = b[i] & d;

}

for (int j = 0; j < 10; j += 2)

c[i] = b[j] + 134;

20

• C-family languages have similar UB rules

• High-level IR is (mostly) independent from target languages
• contains common information

Lowering

Limitations

• No floating-point support

• Only stdlib function calls

• Lack of dynamic memory allocation

• …

Some are research questions; others require more engineering
resources

21

Summary of Found Bugs

122 new errors in total

42% are wrong code bugs

• 66 bugs in GCC

• 32 wrong code, 31 ICE, 3 timeouts

• 28 bugs in LLVM

• 5 wrong code, 5 ICE

• 12 bugs in ISPC

• 5 wrong code, 7 ICE

• 16 bugs in Intel® oneAPI DPC++

compiler

• 9 wrong code, 7 ICE

• 2 bugs in Intel® SDE

• 2 bugs in Alive2

22

Bugs Distribution by Components

23

4

5

1
9

1

8

LoopOptimizer
Polly Optimizer
Scalar Optimization
Backend: X86
isl
new-bugs

LLVM (28 bugs)

55

7

1
2 1 tree-optimization

target

rtl-optimization

ipa

c++

GCC (66 bugs)

Analysis of Reported Bugs

The most common reasons for bugs are:

• Missed corner-cases

• Use of corrupted information

• Too weak preconditions

24

Analysis of Reported Bugs

The most common reasons for bugs are:

• Missed corner-cases
• Examples: INT_MIN, back-edges

• Use of corrupted information

• Too weak preconditions

25

Analysis of Reported Bugs

The most common reasons for bugs are:

• Missed corner-cases

• Use of corrupted information
• Analyses are computationally expensive

• Cache invalidation is hard

• Too weak preconditions

26

Analysis of Reported Bugs

The most common reasons for bugs are:

• Missed corner-cases

• Use of corrupted information

• Too weak preconditions
• Examples: vector size or type mismatch, bool is special

27

https://github.com/intel/yarpgen

28

https://github.com/i
https://github.com/intel/yarpgen

Special thanks to Intel,
GCC and LLVM developers

who fix reported bugs!

29

Looking for Job

• Expected graduation: Fall 2023

• CV: livinskii.com/#cv

• Email: Vsevolod.Livinskii@gmail.com

30

https://livinskii.com/#cv
mailto:Vsevolod.Livinskii@gmail.com

https://github.com/intel/yarpgen

31

https://github.com/i
https://github.com/intel/yarpgen

Backup slides

32

Bugs Distribution by Kind

31
23

7 7

32

5

9 5

3

0

10

20

30

40

50

60

70

GCC LLVM DPC++ ISPC

ICE Wrong code Timeout

33

Bugs Distribution by Component

56

15
9 7

7

11

3 5

3

2

4

0

10

20

30

40

50

60

70

GCC LLVM DPC++ ISPC

Middle-end Back-end Other

34

Loop Optimizations Coverage

• 238 loop-related optimization counters in LLVM

• With GP 71 is better, 1 is the same, none is worse
• Geomean ratio is 9.14

35

Test suite +

SPEC® CPU2017

YARPGen

with GP

YARPGen

without GP

80 72 71

LLVM Bug #51677

void test() {

#pragma clang loop vectorize_predicate(enable)

for (char a = 4; a < var_3; a++) {

arr_13[a] = arr_12[a - 3];

var_23 = arr_12[a - 1];

}

}

>$ clang++ -O0 -march=skx func.cpp driver.cpp && sde -skx -- ./a.out

1

>$ clang++ -O1 -march=skx func.cpp driver.cpp && sde -skx -- ./a.out

0

36

https://github.com/llvm/llvm-project/issues/51677

GCC Bug #102920

void test (unsigned short a, unsigned short b, long long c) {

for (char i = 0; i < (char)c; i += 5) {

if (!b)

var_120 = a;

else

var_123 = a;

}

}

>$ g++ -O3 small.cpp && ./a.out

0

>$ g++ -O2 small.cpp && ./a.out

42
37

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102920

Test Oracles

Differential testing Ground truth

38

Arithmetic Expression Tree

39

a b

+

Orange fuzzer: Nagai E., Hashimoto A., Ishiura N. Reinforcing random testing of arithmetic optimization of C compilers
by scaling up size and number of expressions, 2014

Undefined Behavior Avoidance

40

Overflow

a
INT_MAX

b
42

+

Rewrite

a
INT_MAX

b
42

-
2147483605

Undefined Behavior Avoidance

41

a
INT_MAX

b
42

-
2147483605

c
256

/
8388607

a
INT_MAX

b
42

-
2147483605

c
256

/

a
INT_MAX

b
42

+
c

256

/

Rewrite Rules

42

Generative Fuzzers for C

Csmith Orange Quest

UB avoidance
mechanism

Static analysis +
wrapper functions

Static analysis Limited subset of C

Specialization Universal
Arithmetic
expressions

Calling conventions

Oracle Differential testing Build-in assertions Ground truth

43

Example of a Missed Bug (GCC #105189)

• Triggered with –O1

• Survived for almost 4 years
• Introduced on July 23rd 2018

• Detected on April 6th 2022

int foo() {
return -1;

}

int main() {
int c = foo() >= 0U && 1;
if (c != 1)
abort ();

}

44

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105189

Coverage-Guided Fuzzing

45

	Slide 1: Fuzzing Loop Optimizations in Compilers for C++ and Data-Parallel Languages
	Slide 2: Importance of Testing Loop Optimizations
	Slide 3: Summary of Found Bugs
	Slide 4: Research Contribution and Features
	Slide 5: Research Contribution and Features
	Slide 6: Undefined Behavior (UB)
	Slide 7: Static Undefined Behavior Avoidance
	Slide 8: UB Avoidance for Loops
	Slide 9: UB Avoidance for Loops
	Slide 10: UB Avoidance for Loops
	Slide 11: Research Contribution and Features
	Slide 12: Loop Generation Policies
	Slide 13: Loop Sequence and Loop Fusion
	Slide 14: Array Access Patterns
	Slide 15: Stencils
	Slide 16: Generation Policies Composition
	Slide 17: Research Contribution and Features
	Slide 18: Multi-language Support and IR Lowering
	Slide 19: Multi-language Support and IR Lowering
	Slide 20: Multi-language Support and IR Lowering
	Slide 21: Limitations
	Slide 22: Summary of Found Bugs
	Slide 23: Bugs Distribution by Components
	Slide 24: Analysis of Reported Bugs
	Slide 25: Analysis of Reported Bugs
	Slide 26: Analysis of Reported Bugs
	Slide 27: Analysis of Reported Bugs
	Slide 28
	Slide 29: Special thanks to Intel, GCC and LLVM developers who fix reported bugs!
	Slide 30: Looking for Job
	Slide 31
	Slide 32: Backup slides
	Slide 33: Bugs Distribution by Kind
	Slide 34: Bugs Distribution by Component
	Slide 35: Loop Optimizations Coverage
	Slide 36: LLVM Bug #51677
	Slide 37: GCC Bug #102920
	Slide 38: Test Oracles
	Slide 39: Arithmetic Expression Tree
	Slide 40: Undefined Behavior Avoidance
	Slide 41: Undefined Behavior Avoidance
	Slide 42: Rewrite Rules
	Slide 43: Generative Fuzzers for C
	Slide 44: Example of a Missed Bug (GCC #105189)
	Slide 45: Coverage-Guided Fuzzing

