
VSEVOLOD LIVINSKII
vsevolod [dot] livinskii [at] gmail [dot] com

LinkedIn � GitHub

EDUCATION

University of Utah August 2018 – Present
Salt Lake City, USA
School of Computing
Ph.D. student in Computer Science
Research advisor: Prof. John Regehr
GPA: 4.0

Moscow Institute of Physics and Technology September 2016 – July 2018
Moscow, Russia
Department of Radio Engineering and Cybernetics
Master of Science
Program specialization: Info-communication and Computing Systems and Technologies
Research advisor: Dmitry Babokin
GPA: 4.0, graduated with honors

Moscow Institute of Physics and Technology September 2012 – July 2016
Moscow, Russia
Department of Radio Engineering and Cybernetics
Bachelor of Science
Program specialization: Info-communication and Computing Systems and Technologies
Research advisor: Dmitry Babokin
GPA: 3.74

PROFESSIONAL EXPERIENCE

Research Assistant August 2018 – present
University of Utah, Salt Lake City, USA

• Research ways to utilize coverage-guided fuzzing for code generation to test auto-vectorization
algorithms and loop optimizations of modern and emerging compilers (in collaboration with Intel)

• YARPGen – random test generator for C/C++ compilers and compilers for data-parallel lan-
guages that was able to find more than 340 bugs in LLVM, GCC, ICC, ISPC, DPC++, SDE, and
Alive2.

Compiler Verification Intern – AI Software May 2021 – August 2021
Nvidia

• Designed and implemented automated fuzzing system for Machine Learning compilers.

– Devised generation algorithms

– Designed fuzzer architecture

– The solution was adopted by the testing team for regular use

– Modular fuzzer architecture allowed other team to re-purpose fuzzer for another language in
three days

mailto:vsevolod [dot] livinskii [at] gmail [dot] com
https://www.linkedin.com/in/livinskii
https://github.com/Vsevolod-Livinskij
https://www.cs.utah.edu/~regehr/
https://www.linkedin.com/in/babokin/
https://www.linkedin.com/in/babokin/
https://github.com/intel/yarpgen


Software Engineering Intern May 2020 – August 2020
Intel Corporation

• Developed and integrated automated fuzzing testing methods for experimental and emerging loop-
oriented compilers.

– Implemented support for DPC++ and ISPC languages in fuzzing system

– Adapted automated testing system to support emerging compilers

– Integrated the solution into the primary testing system

Software Engineering Intern May 2019 – August 2019
Intel Corporation, Santa Clara, USA

• Researched test generation methods for loop optimization verification.

– Created a proof-of-concept prototype

– Integrated the prototype into the existing testing system

– Performed analysis of existing solutions

– Explored domain and devised important use-cases

Software Development Intern September 2014 – June 2018
Intel Corporation, Moscow, Russia

• Research and development of YARPGen – random test generator for C/C++ compilers. This
project was performed in a group of two people. As a result, we created an efficient unified
compiler-testing pipeline that was able to find 170 software bugs in Clang and GCC.

– Devised generation algorithms

– Designed framework architecture

– Developed, deployed and supported testing system that allows automatic discovery, classifi-
cation, and reduction of test-cases

– Introduced a novel metric to quantify compiler random testing quality efficiently

– Conducted a paper survey, analysis of all of the currently published techniques

• Development and support of experimental LLVM-based compiler with explicit language parallelism
(ISPC). It is widely used in ray-tracing and visualization tools running on CPU (open-source
Embree and Ospray ray-tracers, proprietary solutions developed by Dreamworks and Pixar).

– Implemented code generation for Knights Corner, Knights Landing, and Skylake Server ar-
chitectures

– Carried out performance tuning to improve the quality of the output code

– Designed saturation arithmetic math functions and built-in corresponding data types

– Provided technical expertise for several internal and external customers; orchestrated the
testing infrastructure; supported new releases of LLVM

– Supervised new members as a part of four-person team

https://github.com/intel/yarpgen
https://ispc.github.io
https://embree.github.io/
https://www.ospray.org/


PUBLICATIONS AND TALKS

• V. Livinskii, D. Babokin, J. Regehr. “Fuzzing Loop Optimizations in Compilers for C++ and
Data-Parallel Languages.” Proceedings of the ACM on Programming Languages 7 PLDI, 2023

• V. Livinskii, D. Babokin, J. Regehr. “YARPGen: A Compiler Fuzzer for Loop Optimizations
and Data-Parallel Languages” LLVM Developers’ Meeting, 2022

• V. Livinskii, D. Babokin, J. Regehr. “Random testing for C and C++ compilers with YARP-
Gen.” Proceedings of the ACM on Programming Languages 4 OOPSLA, 2020
Distinguished paper award

• V. Livinskii, D. Babokin. “Automatic Optimizations Errors Detection in C/C++ Compilers
with Yet Another Random Program Generator” 60th Moscow Institute of Physics and Technology
Scientific Conference, 2017

• V. Livinskii, A. Mitrokhin, D. Babokin. “Yet Another Random Program Generator – a random
test generator for optimization verification in C/C++ compilers.” 59th Moscow Institute of Physics
and Technology Scientific Conference, 2016

• V. Livinskii, A. Mitrokhin, D. Babokin. “A survey of random program generation methods for
C/C++ compiler testing.” 58th Moscow Institute of Physics and Technology Scientific Conference,
2015

• A. Mitrokhin, V. Livinskii, D. Babokin. “LLVM: Advanced Vectorization Support and Draw-
backs in the Presence of Explicitly Parallel Code.” 58th Moscow Institute of Physics and Technol-
ogy Scientific Conference, 2015

ACADEMIC AWARDS

• ACM SIGPLAN Distinguished Paper Award for V. Livinskii, D. Babokin, J. Regehr. Random
Testing for C and C++ Compilers with YARPGen.

• Best poster award at 59th Moscow Institute of Physics and Technology Scientific Conference, 2016

TECHNICAL SKILLS

• Languages: C, C++, Python, Bash, x86 Assembly

• Technologies and Tools: Fuzzing, Automated Testing, Compilers, Machine Learning, Git,
Linux, LLVM, Clang, ISPC


