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Compilers are part of the foundation upon which software systems are built; they need to be as correct

as possible. This paper is about stress-testing loop optimizers; it presents a major reimplementation of Yet

Another Random Program Generator (YARPGen), an open-source generative compiler fuzzer. This new version

has found 122 bugs, both in compilers for data-parallel languages, such as the Intel® Implicit SPMD Program

Compiler and the Intel® oneAPI DPC++ compiler, and in C++ compilers such as GCC and Clang/LLVM. The �rst

main contribution of our work is a novel method for statically avoiding unde�ned behavior when generating

loops; the resulting programs conform to the relevant language standard, enabling automated testing. The

second main contribution is a collection of mechanisms for increasing the diversity of generated loop code; in

our evaluation, we demonstrate that these make it possible to trigger loop optimizations signi�cantly more

often, providing opportunities to discover bugs in the optimizers.
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1 INTRODUCTION

Machine learning, big data, and other recent trends have caused loop-speci�c compiler optimizations
to increase in importance and in sophistication. For example, both GCC and LLVM can use the
polyhedral model [Feautrier 1992a,b] to analyze and transform loop nests. LLVM’s polyhedral
optimizer—its “polly” subproject1—contains 24,700 lines of C++, and relies on another 175,000 lines
of external support code. This much code, performing tricky symbolic reasoning, written in an
unsafe language, and engineered to run quickly, might be expected to contain bugs and, in fact, a
recent study of defects in GCC and LLVM [Zhou et al. 2021] found that “loop optimizations in both
GCC and LLVM are more bug-prone than other optimizations.” When a bug causes the compiler to
crash, it is annoying; when it causes the compiler to emit incorrect object code, it is potentially
dangerous. For example, Listing 1 shows a loop optimization bug in GCC that we discovered and
reported.

1https://polly.llvm.org
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void test(unsigned short a, unsigned short b, long long c) {

for (char i = 0; i < (char)c; i += 5) {

if (!b)

var_120 = a;

else

var_123 = a;

}

}

Listing 1. This function triggers a loop-related miscompilation bug in GCC (#102920); it was automatically
reduced from a test case that we generated

void stencil(int* restrict in, int* restrict out , int n) {

for (int i = 0; i < n; ++i)

out[i] = (in[i - 1] + in[i] + in[i + 1]) / 3;

}

Listing 2. Even a very simple stencil loop like this triggers interesting optimizations that we want to test
https://gcc.godbolt.org/z/aEs1daYWq

The research problem addressed by this paper is how to expose bugs in the implementations of
sophisticated loop optimizers. The main hypothesis that we evaluate is “loop optimization bugs in
compilers for C-like data parallel languages can be e�ectively discovered using randomly generated
programs that are free of unde�ned behavior (UB), and that also contain idioms recognized by
loop optimizers.” Randomized testing is desirable because the space of inputs to a compiler is very
large and—empirically—compiler developers are not capable of writing test cases by hand that
reveal all of the defects in a production-grade compiler. We require generated programs to be
UB-free because it is not possible to reach reliable conclusions from the observable behaviors of a
program that executes UB. Randomized testing methods have been applied to compilers for at least
60 years [Sauder 1962] and they can be e�ective.

Although random generation of UB-free code is a problem that has been addressed by a number
of previous papers, we are unaware of prior work speci�cally focusing on generating the kinds of
expressive loop idioms that appear to be required to stress-test loop optimizers. Listing 2 shows an
example of the kind of code that we want to generate; it is a stencil: a loop where each element
of an output array is a function of a collection of nearby elements of an input array or arrays. In
this case, each output element is the average of three neighboring input elements. To optimize this
code, a compiler can notice that in[i + 1] in one loop iteration is the same value as in[i] in the
next iteration, and also in[i - 1] in the iteration after that. Thus, while a naive translation of this
loop would load all three values from RAM each time the loop body executes, an optimized version
only needs to load one value from RAM, with the other two values being forwarded from previous
iterations using registers.

Modern compilers for C and C++ use sophisticated loop transformations and auto-vectorization
to achieve high performance, while data-parallel languages such as ISPC [Pharr and Mark 2012]
and SYCL [Khronos® SYCL™Working Group 2020] require less aggressive analysis and optimiza-
tion since the languages directly expose �ne-grained parallelism. However, compilers for all of
these languages perform non-trivial code transformations, which are error-prone, especially when
targeting modern CPU and GPU architectures. Our work targets all of these C-family languages
by generating random programs in a high-level intermediate representation that supports loop

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 181. Publication date: June 2023.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102920
https://gcc.godbolt.org/z/aEs1daYWq


Fuzzing Loop Optimizations in Compilers for C++ and Data-Parallel Languages 181:3

idioms and also static analysis to ensure UB-freedom; it can be lowered relatively straightfor-
wardly to the four di�erent concrete syntaxes. As a starting point, we used our previous version
of YARPGen [Livinskii et al. 2020], which was designed to target scalar optimizations in C and
C++ compilers, but we almost entirely re-implemented it to support loops and to output multiple
languages. In this paper, we will refer to the old implementation as YARPGen v.1, and to the new
one as YARPGen or YARPGen v.2 when it is necessary. The version that we started with contained
8,619 lines of C++; to patch that program (using Git’s patch facility) to the current YARPGen v.2
requires removing 6,295 lines of C++ while adding 10,099.
YARPGen v.2 was able to detect 66 previously-unknown bugs in GCC, 28 in LLVM, 16 in the

Intel® oneAPI DPC++ compiler, and 12 in Intel® ISPC. Furthermore, although these targets were
not a primary focus for us, we found two bugs in the Intel® Software Development Emulator2 and
two in the Alive2 translation validation tool [Lopes et al. 2021]. We reported all of these bugs and
most of them have been �xed, showing that compiler developers consider the kind of bugs that
we �nd to be worthwhile. The research contributions of this paper include a static UB avoidance
mechanism for loops, and our loop generation policy mechanism for creating programs that help
us �nd interesting and di�cult-to-trigger compiler bugs.

2 BACKGROUND: UNDERSPECIFIED ASPECTS OF C-FAMILY PROGRAMMING

LANGUAGES

To support generating high-quality object code across a wide variety of target platforms, the C
language and its descendants are somewhat underspeci�ed: they give implementations substantial
freedom to make convenient and e�cient choices. These choices come in three �avors.
First, implementation-de�ned behaviors are those where the compiler must make a consistent

choice and also document it. For example, the size of the int type, and the range of values that it
supports, are implementation-de�ned. These behaviors do not concern us in this work. In principle,
they limit the scope of di�erential testing, which can only be done across compilers that agree on
a collection of important implementation-de�ned behaviors. However, in practice, most modern
compilers of interest agree on these.
Second, unspeci�ed behaviors are those where there compiler must choose from a collection of

alternatives, with no requirement for consistency. For example, the order in which arguments to
a function are evaluated is unspeci�ed. In practice, these behaviors are few enough and benign
enough that they can be avoided fairly easily—for example, by ensuring that function arguments
do not have side e�ects.

Finally, unde�ned behaviors in C-family languages are untrapped error conditions: the standard
imposes no requirement on the behavior of a program that, for example, accesses out-of-bounds
memory. There are hundreds of unde�ned behaviors (UBs) and it is, in general, di�cult to statically
guarantee their absence. Avoiding UB while generating expressive loops is a primary contribution
of our work.

3 GENERATING UB-FREE PROGRAMSWITH EXPRESSIVE LOOPS

Our code generator’s output should be expressive: it should be syntactically and semantically
interesting in the sense that it triggers as many code paths in the compiler (and, in particular, the
loop optimizer) as possible. On the other hand, its output must not execute unde�ned behaviors,
and ideally it should avoid UB without using the kind of pervasive dynamic checking that, for
example, Csmith [Yang et al. 2011] used. These goals are in tension; this section describes how
we achieve them both. Figure 1 provides an overview. Generation proceeds in three main steps:

2https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
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Generation Policy 
Collection 
(Sec 3.2)

Generation 
PolicyContext

int32_t a[10] 
int32_t c[10] 
char b[15]
uint32_t d 

Symbol tables 
 (Sec 3.4)

Generate High-level Structure  
(Sec. 3.3)

Expand High-level Structure 
(Sec. 3.4)

// test.cpp
for (int i = 0; i < 10; i += 2) {
    if (b[i])
        a[i] = b[i] ^ d;
    else
        a[i] = b[i] & d;
}
for (int j = 0; j < 10; j += 2) 
    c[j] = b[j] + 134; 
 
// driver.cpp
int32_t a[10] = {26,...,26}; 
int32_t c[10] = {14,...,14}; 
char b[15] = {7,...,7}; 
uint32_t d = 4238;

Lower IR to target language 
 (Sec. 3.6)

Loop #1: i in [0, 10), step 2
    If-then (b[i]):
        a[i] = b[i] ^ d
    Else:
        a[i] = b[i] & d 
Loop #2: j in [0, 10), step 2
    c[j] = b[j] + 134

Loop #1: fusible with #2
    If-then:
        Assignment
    Else:
        Assignment 
Loop #2:
        Assignment

Value predictor & 
UB detector  

(Sec 3.5)

Fig. 1. Overview of how YARPGen v.2 generates code

creating a high-level program skeleton, �eshing out the skeleton with details such as arrays and
operations on them, and then lowering our intermediate representation (IR) to a concrete syntax.

3.1 Test Oracles

Software testing requires an oracle to determine if some execution of the system under test was
correct or incorrect. In addition to the trivial oracle that looks for abnormal termination of the
compiler process, YARPGen v.2 supports:

• Ground truth: As a side-e�ect of unde�ned behavior avoidance, YARPGen precomputes the
e�ect of executing the randomly generated code. Thus, a miscompilation can be signaled if
the result of running the compiled code di�ers from this prediction.

• Di�erential: We compute a checksum of the e�ect of executing the randomly generated code;
this is used for di�erential testing where the result is not known in advance, but a bug is
signaled when two di�erent compilers (or two di�erent modes of the same compiler, such as
gcc -O0 and gcc -O3) disagree with each other.

Both oracles are necessary in practice. The �rst one is useful when di�erential testing is im-
possible, for example because there is only one compiler for a given language. This is the case for
Intel® ISPC, where we have found bugs that a�ect all modes of the compiler, such as issue #1768;
di�erential testing is incapable of �nding this bug. However, pre-computing the result of a program
interferes with automated test-case reduction tools (e.g., C-Vise [Liška 2022], C-Reduce [Regehr et al.
2012], and Perses [Sun et al. 2018]) because they make non-semantics-preserving changes during
reduction. Thus, it is crucial that we do not rely on the code producing a speci�c answer—this is
where di�erential testing becomes most useful. (This sort of test-case reduction relies on external
tools to reject reduction steps that trigger unde�ned behaviors.)

3.2 Loop Generation Policies

Generation policies is an idea introduced in our previous paper about YARPGen v.1 [Livinskii et al.
2020]. We used this as something of a catch-all term for mechanisms that were used to increase the
probability of generating test cases that were believed to be desirable, and that (without generation
policies) were being generated only rarely, if at all. In this paper, we have adapted this idea, broadly
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construed, to generating loops. As a simple example, consider that we would like to test loop fusion,
an optimization that can merge adjacent loops when they have identical iteration spaces and also
lack dependencies that block fusion. The odds of a pair of fusible loops being organically generated
is quite low, but it is easy to generate such a pair simply by making the decision to do so.

The basic principle behind generation policies is that we cannot �nd bugs in optimizations that
we cannot trigger. A rule of thumb that we have used is that if we run across an interesting loop
transformation that is supported by more than one compiler, then we should at least consider
creating a generation policy that targets it. We used existing bugs reports, unit tests, test suites,
and general knowledge of common compiler optimizations as sources of inspiration. We analyzed
these to identify interesting patterns that were missing from YARPGen v.2 at the time, and tried to
�t them into the existing infrastructure or extend it to support them. A di�cult issue is helping
YARPGen trigger speci�c transformations without constraining expressiveness to such an extent
that fuzzing e�ectiveness is compromised. What we attempt to do is abstract away the essence
of the pattern that triggers the transformation, while leaving to random chance as many of the
details of instantiating the pattern as possible. The resulting fuzzing technique ends up being
something like a gray-box fuzzer, but with a human—a YARPGen developer—in the loop, adding
generation policies as required in response to gaps in code coverage. We have added loop generation
policies to YARPGen v.2 piecemeal over a period of several years as we learned how to break loop
optimizers; the rest of this section describes them. They are not mutually exclusive; they compose
to increase the diversity of the generated code even further. For example, YARPGen v.2 can generate
a combination of reduction and stencil (a += (b[i - 1] + b[i] + b[i - 1]) / 3) that will
compute a reduction of three elements of the array.

Loop sequences and loop nests. These are represented as a �rst-class elements in the fuzzer’s
IR; they are the main factor that determines the high-level shape of the generated code. They are
essential for making coordinated decisions involving multiple loops. For example, to trigger a loop
interchange optimization, we have to generate a loop nest that contains array accesses with a
column-major order. To trigger loop fusion, adjacent loops have to have the same iteration spaces.
To trigger other loop optimizations, “perfectly nested loops” where all assignment operators are in
the innermost loop must be generated.

Array access patterns. Applications often access arrays in idiomatic patterns [McCool et al. 2012],
and optimizing compilers have adapted to provide speci�c support for some of these. These patterns
are determined by the interaction between arrays and loops’ iteration spaces. First, we can arbitrarily
decide the relation between array dimensionality and the loop nest depths (fewer, same, or more).
Second, we can pick the order of the induction variables used in the array subscripts—in order
of the loop nest or not, and whether to use the same induction variable to access multiple array
dimensions.

This approach allows us to achieve good expressiveness and to mimic various access patterns that
are found in real applications. For example, if we decide that the array dimension matches the loop
depth and use the same induction variables for all dimensions (a[i][i]), we will get a diagonal
traversal of a matrix. Another option is to use in-order traversal of an array with some constant
indexes to get a slice; this generation policy causes all of these special cases to happen regularly.
We consider array access patterns to be a set of rules that govern generation of individual array
subscripts—subsequent policies such as stencils make more involved decisions that are synchronized
across multiple array subscripts.

Stencils. Stencil codes (Listing 2) are ubiquitous in image processing and scienti�c applications,
such as �nite di�erence methods. Given the huge number of degrees of freedom available to a naive
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extern int a[], b[];

void foo() {

for (int i = 0; i < 20; ++i)

a[i] = b[i];

}

Listing 3. Code snippet that triggers LLVM’s memcpy idiom recognizer

random program generator, it is not likely that stencils will naturally be generated. Therefore, we
implemented a stencil pattern as a �rst-class IR element, that can be used in arithmetic expressions
inside loops. Our stencil generation policy results in loops that use multiple constant o�sets from a
single induction variable into an array or arrays. This gives us direct, �ne-grained control over
things like stencil size, stride, number of array dimensions used, and number of arrays used, that
would be di�cult to get control over if we only used unstructured random generation.

Vectorizable loops. Automated vectorization is a sophisticated program transformation performed
by most of the compilers we are targeting. It tends to be somewhat fragile, and can be defeated by
a number of program properties such as:

• data dependencies across loop iterations
• library functions outside of a limited set
• unpredictable iteration spaces
• unpredictable control �ow, particularly related to exiting the loop

Furthermore, it is often the case that only the innermost loop of a loop nest gets vectorized. If we
want to heavily stress autovectorizers, we need to ensure that all prerequisites are met su�ciently
often. In our initial experiments, this did not happen naturally, so we added a “vectorizable” loop
property that ensures that they will be ful�lled, satisfying our goal of generating many vectorizable
loops, but not compromising on our ability to express more general loops.

Reductions. These computations—common in real applications—reduce the dimensionality of data,
for example by summing the elements of a loop, computing the smallest element, etc. YARPGen’s
reduction generation policy provides a generalized version of this kind of computation where a
randomly generated function is applied element-wise to an input array, resulting in an output array
of reduced dimensionality.

Loops over bytes. Loops that iterate over a vector of bytes are common, and optimizing compilers
like to turn them into more e�cient computations when possible. For example, open-coded loops
over bytes can sometimes be turned into faster implementations such as the system-provided
memset or memcpy routine (Listing 3). These idiom recognizers tend to be fragile, and they are
highly desirable targets for stress testing. To achieve this, YARPGen v.2 employs a byte-loop pattern
by creating a loop header that iterates through bytes, and populates the loop body with randomly
generated expressions.

Compiler-speci�c loop attributes. It can be useful to override a compiler’s built-in cost functions
using pragmas such as LLVM’s #clang vectorize, #clang interleave, and #clang unroll.
We optionally add them to loops when generate tests for C and C++. It is safe to do so, because
when a compiler encounters unknown pragmas, it simply emits warning messages.
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3.3 Generating the High-Level Program Structure

Because our focus is on intra-procedural loop optimizations, YARPGen v.2 generates a single
function when it is run. Its �rst step, structure generation, performs top-down construction of
skeleton code that it will later �esh out with details. The high-level code includes elements found
in C-family languages such as conditionals and assignments, but it also contains larger structural
elements such as loop sequences and loop nests. During this step, generation policies are invoked
to determine properties of various program elements. For example, generation policies supply the
maximum depth of a loop nest and the maximum length of a loop sequence. Other generation-
policy-based decisions are also made during this phase, such as a loop sequence being marked
as containing loops that have a common iteration space, or an individual loop being marked as
auto-vectorizable. These attributes will be used later to guide how YARPGen �lls in the detailed
code. The reason that we �rst create the high-level skeleton is that this led to a pleasing separation
of concerns in the random generator, making it more modular and debuggable than it otherwise
would have been. For example, as a debugging aid YARPGen can print a representation of the
high-level structure, which can be inspected readily because it lacks complicating details.

3.4 Expanding the Skeleton

The �rst step in �eshing out the skeleton program is to generate global data items that the random
code will access. Data is split into a table of inputs, whose values are known and will not be
changed by the randomly generated code, and outputs, whose values will be inspected in order to
detect miscompilation bugs. Since YARPGen does not attempt to look for bugs in �oating point
optimizations, these globals are integer-typed scalars and arrays. On the input side, only scalar
variables are created in this step, with arrays being created later, on the �y, in conjunction with loop
generation, to ensure that array sizes match up with loop iteration spaces. Output variables and
arrays are created during the expansion of assignments later. If any of the global variables end up
being unused by the randomly-generated code, they are removed before IR is lowered to a concrete
syntax. The values stored in these global variables are known to YARPGen—which uses them for its
unde�ned behavior analysis—but are opaque to the compiler that is being tested. We currently rely
on separate compilation to provide opacity; if we ever test a compiler that is su�ciently aggressive
with cross-�le optimization, we will have to be heavier handed. For example, the initialized globals
could be placed in a dynamically loaded library.
After global input variables have been created, YARPGen proceeds to �ll in the IR for the

generated code. Expression nodes in the IR are expanded top-down; the targets of assignments are
allocated in the output symbol table, exposing the resulting values to external compiler-correctness-
checking. Each scope gets its own symbol table; these local tables contain iterators in addition to
scalars and arrays. Iterators are treated separately by the unde�ned behavior analysis: they are
used as induction variables in loops, but they are not involved in arbitrary randomly generated
computations. Local symbol tables store the type, dimension, scope, initial value, and current value
of each data item.
To expand a loop header, YARPGen �rst has to take into account constraints imposed by high-

level loop properties that come from generation policies. For example, a loop that is part of a
fusible sequence will have the same iteration space as its neighboring loops. A loop performing
a stencil computation will likely have an iterator that does not (quite) run over the entire array,
because the stencil will access array elements o�set from the iterator’s position. Initially, each loop
is characterized by start, end, and step values that are constants, but YARPGen randomly replaces
some of these constants with expressions that are partially opaque to the compiler (by depending
on external variables), but end up evaluating to the same values that the constants would have held.
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varying int max(varying int a, varying int b) {

return a > b ? a : b;

}

Listing 4. ISPC code for a parallel max operation; varying indicates a vector data type. This function is
compiled into a single masked vector instruction: vpmaxsd zmm0, zmm0, zmm1 https://ispc.godbolt.org/z/

MraWhd5Tb

This gives us some interesting diversity in how loop iteration spaces look to the compiler without
making UB avoidance more complicated than it already is.

3.5 Static Undefined Behavior Avoidance for Loops

Loops potentially lead to two kinds of UB: out-of-bounds array accesses and arithmetic UB inside
the loop body. Whereas Csmith [Yang et al. 2011] relied on dynamic checks to avoid both kinds of
UB, our hypothesis is that pervasive conditional control �ow in loop bodies would hamper some of
the optimizations that we wish to test. Existing research [Even-Mendoza et al. 2020] appears to
corroborate this suspicion.
YARPGen’s unde�ned behavior avoidance is entirely static, and uses concrete value tracking,

which was pioneered by the Orange family of random program generators [Nagai et al. 2012, 2013,
2014] and extended in our previous paper about YARPGen v.1 [Livinskii et al. 2020]. For example,
when generating a shift operator in a C-family language, the shift exponent must be non-negative
and also smaller than the bitwidth of the value being shifted. Thus, if YARPGen v.1 wanted to
generate x << y in a situation where y == -1000, it would instead generate something like
x << (y + 1005). As long as the code being generated is loop-free, this strategy maintains the
invariant that the already-generated program fragment is UB-free. Thus, when the tool terminates,
the entire program is UB-free. For scalar code this approach worked well and YARPGen v.2 also uses
it. This UB avoidance strategy is not altogether straightforward to extend to loops, though both
Orange and YARPGen v.1 had some limited solutions for this. Their approaches are summarized in
Section 6, so here we will give a brief overview. Orange3 simulated every loop iteration, avoiding
UB any time that it would have happened by adding values from an array speci�cally initialized
with values that avoid UB. This approach is computationally expensive, and can produce UB
avoidance artifacts in the generated code, similar to Csmith’s [Yang et al. 2011] wrapper functions.
Orange4 [Nakamura and Ishiura 2016] simply ensured that each generated loop would execute at
most once. This approach is not able to test loop optimizations that rely on run-time properties
of the code, such as loop trip count for some case of unrolling or vectorization. YARPGen v.1 had
experimental support for loops that, like Orange4, ensured that the �rst iteration would not trigger
UB; but then it also ensured that subsequent iterations of the loop would see the same values.

YARPGen v.2 uses this same approach—ensuring that all loop iterations see the same values—as
one of its two approaches to generate UB-free loop code. This is possible because we keep track of
every iteration space that we generate, as well as dimensions of the arrays, so that these can be
matched up. It also helps that we maintain a clean separation between variables that are only used
as inputs, and those that are only used as outputs, making value tracking pretty straightforward
even inside loop bodies. We rely on separate compilation (Section 3.4) to ensure that the compiler
cannot notice that we have used these strategies, forcing it to analyze the general case. Separate
compilation cannot, however, stop the compiler from observing runtime characteristics of our code.
For example, at runtime, ISPC maintains an execution mask to track active program instances3

3An ISPC program instance is similar to a CUDA thread or an OpenCL work-item https://ispc.github.io/ispc.html#basic-

concepts-program-instances-and-gangs-of-program-instances
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for (int i = 0; i < N; ++i) {

a[i] = (i % 2 == 0) ? (b[i] + c[i]) : (b[i] - c[i]);

d[i] = (i % 2 == zero) ? (e[i] * f[i]) : (e[i] / f[i]);

}

Listing 5. Addition of two arrays, where UB is avoided by conditional access, based on the iterator. In the
second case the condition is obfuscated with a variable whose value is opaque to the compiler.

in order to use masked vector instructions to describe control �ow, rather than using explicit
branching. For example, the max function (Listing 4) is compiled into a single instruction. On
hardware targets that do not support masking directly, the cost of applying a mask is high, and it
becomes pro�table to check for the “all-on” state of the mask at runtime, and execute a separate,
simpler code path in that case. Our �rst method produces loops that operate on the same values
in each iteration. Therefore, the mask will always contain the same value, and we will only test
the “all-on” code path and will never trigger the general path. We would instead like the execution
mask to contain diverse values so all code paths based on it are tested.

To ensure that we can test this sort of optimization, we developed a novel generation mechanism
that allows arrays to usemultiple values (but without attempting to analyze all loop iterations, which
is computationally infeasible). We do this by logically separating the iteration space of the loop into
subsets. At present, we support partitioning into two subsets—even and odd elements—but we plan
to expand and generalize this support in the future. In this scheme, the iterator walks through the
array in an alternating odd-even pattern, so the loop body performs a di�erent computation for the
even and odd values. For example, if we start at element one and use three as a step, we will get the
required pattern. Optionally, YARPGen can hide the splitting criterion from the compiler, as shown
in Listing 5, using an opaque variable. A limitation of this method is that arrays can have di�erent
values only along one of the axes. For example, in a case of three-dimensional array, alternating
values can be in rows, columns, or planes, but only in one of these for any given loop nest.

The main advantage of loop partitioning is that it permits YARPGen v.2 to reuse its static UB-
avoidance mechanism in loop bodies with minimal overhead in terms of time taken to generate
random code: the UB avoidance mechanism runs twice per loop instead of once.

This method has several advantages over the previous approaches. It allows us to test divergent
values in the loop body without any wrapper functions, it does not create UB avoidance artifacts,
and it only requires us to analyze a small, �xed number of loop iterations, minimizing overhead.
This approach is one of the two major contributions of this paper.

3.6 Lowering YARPGen IR to Multiple Languages

Because the four C-family languages supported by YARPGen v.2 are fairly similar, and because its
IR has been designed taking all of them into account, lowering our intermediate representation
to any of them is reasonably straightforward. One useful thing that we can do during lowering,
when the target language supports several similar constructs, is to choose from them randomly.
For example, when targeting ISPC and SYCL, we randomly choose between emitting regular and
data-parallel loops, driving the compiler down di�erent code paths.
The two most similar of the supported languages are C and C++. From the YARPGen point of

view, they are almost identical. The di�erence between them includes di�erent UB rules for the
left-shift operator, supported types, and standard library functions. The rest of the machinery is
shared.
Support for ISPC, on the other hand, is more involved. The main complexity comes from its

explicit vector types, which means that YARPGen has to support an additional type parameter to
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capture this in its IR. This type property is orthogonal to C++ type properties, which add another
layer of type casting rules. They have to be supported in the form of explicit casts, as well as implicit
casting rules that are similar to integral promotion and arithmetic conversions in C++. We also
extend support for standard library calls to reductions and vector-wise operations.

YARPGen’s SYCL support is limited, and did not require any augmentation of the fuzzer IR. We
were able to satisfy the limitations of parallel SYCL loops by changing generation parameters, such
as maximum depth of data-parallel loops or set of allowed standard library functions. The main
modi�cations were implemented in the lowering component of the fuzzer, where we had to support
data transfer between the test driver and test function.

3.7 High-level Intermediate Representation

The high-level IR in YARPGen v.2 is designed to support expressive, UB-free loops, and also to
lower to multiple target languages. This IR is roughly analogous to a compiler IR, in the sense that
our IR nodes represent program objects such as types, values, statements, and expressions. It is,
overall, simpler than a compiler’s IR because YARPGen does not need to support the wide variety
of analyses and transformations that an optimizing compiler supports. Rather than discovering
properties of something like the iteration space of a loop, YARPGen tends to make a decision
about the iteration space ahead of time, and then subsequently generates code having the desired
properties.
Our IR supports generation of expressive, UB-free loops in two ways. First, we carefully chose

what elements have a �rst-class representation in the IR; these include loop sequences, loop
nests, and stencils. Compiler IRs, in contrast, would usually represent these elements implicitly
as collections of more primitive nodes. By directly representing higher-level abstractions, we can
more easily enforce high-level properties such as creating perfect loop nests or synchronizing the
iteration spaces of a sequence of loops. The second way that our IR supports expressiveness and
UB-freedom is by supporting a variety of auxiliary elements that track the program environment
and the current state of the generation process. For example, generating a loop that can be reliably
vectorized requires restricting its behavior in several ways (Section 3.2); the loop context object
helps track these.

Supporting lowering to multiple programming languages is mainly a matter of avoiding commit-
ment to particular representations too early. For example, matrix multiplication in ISPC uses data-
parallel loops with carefully constructed operations to avoid data-dependency con�icts, whereas
C++ uses simple loop nests. These code fragments look quite di�erent at the syntax level, but since
they perform the same operation, we represent them using the same IR construct. Similarly, vector
types in ISPC serve some of the same functions as arrays in other languages; we have IR elements
that abstract over this representation issue.

3.8 Generating a Test Harness

Besides a �le containing the randomly generated function, YARPGen v.2 also emits a header �le
containing declarations for global variables and a driver �le that contains a main function and
also de�nitions for all global variables. The randomly generated code typically receives some of its
inputs via parameters and others via global variables. The main function initializes data items, calls
the randomly generated function, and then looks at its return value and also the values of global
variables; to support the di�erential testing oracle it prints a checksum of these outputs, and to
support the ground truth oracle it checks for mismatches with its value predictions.

3.9 Limitations

Features not yet supported by YARPGen v.2 include:
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• Floating point math
• Dynamic memory allocation
• Support for multiple random functions—generated code includes function calls, but only to
standard library code

• First-class pointers and pointer arithmetic—YARPGen v.2 currently only supports the limited
kinds of pointers that occur when an array value decays into a pointer type

• Non-standard vector extensions, such as intrinsic functions that give C or C++ code access
to speci�c vector instructions

Some of these limitations are inherent to our design. For example, we did not set out to �nd
bugs in vector intrinsics, and in fact optimizing compilers more or less leave these intrinsics alone
during compilation, treating them as opaque. Fixing other limitations is clearly desirable, and is a
matter of putting more engineering resources into YARPGen. For example, supporting multiple
functions that call each other should be fairly straightforward given the infrastructure that we
have already created. Finally, some limitations seem di�cult to lift. The most prominent example is
absence of �oating-point (FP) support. This is a serious limitation, but it is on par with the state of
the art in C++ compiler fuzzing. To the best of our knowledge, there exist only two compiler fuzzers
(Orange [Nagai et al. 2014] and YARPGen v.1 [Livinskii et al. 2020]) that have addressed the issue
of correct compilation of IEEE FP, and both of them have serious limitations and did not appear to
generate signi�cant results. We discuss this issue and possible solutions further in Section 5.

4 EVALUATION

This section describes the bugs that have been found using YARPGen v.2, and evaluates its ability
to trigger various loop optimizations. These results—including the number of reported bugs—are
completely separate from our previous work on YARPGen v.1 [Livinskii et al. 2020].

4.1 Summary of a Testing Campaign

Over the last three years, we used YARPGen v.2 to test then-current versions of GCC and LLVM,
as well as occasionally testing Intel® ISPC, the Intel® oneAPI DPC++ compiler, and Alive2. An
up-to-date list of bugs found by YARPGen, that we have reported, is available online.4 In all cases,
compilers targeted various �avors of x86-64. We checked that YARPGen v.2 can be used to test
ARM programs (using an Apple M1 chip), but we did not perform a thorough testing campaign
for that target. Our testing focused on commonly used optimization levels: -O0 and -O3. Jiang
et al. [2022] have shown that esoteric compiler options can increase the number of detected bugs.
However, we avoided these since, in our experience, compiler developers are often not motivated
to �x issues that are encountered far away from the default optimization pipeline.
The top-level results of our testing campaign are:

• 66 bugs in GCC. All of these were either �xed or assigned to compiler developers, showing
that bugs discovered by YARPGen are valued by the GCC developers. 32 of these were
miscompilation bugs, 31 were compiler crashes, and three were cases where the compiler
failed to terminate. 56 of the bugs were in the middle-end optimizations, seven in the x86-64
backend, two were in an inter-procedural optimization, and one was in a front-end. 22 of the
bugs we reported a�ected more than one released version of the compiler. 13 of the bugs that
we reported were independently rediscovered by users. Table 1 shows the 50 most recently
reported bugs.

• 28 bugs in LLVM. 18 of these were �xed, one was con�rmed, one was resolved, and eight
remain unacknowledged. 23 of these bugswere compiler crashes and �veweremiscompilation

4https://github.com/intel/yarpgen/blob/main/bugs.rst
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bugs. 15 were in a middle-end optimization, 11 in the x86-64 backend, and two were not
classi�ed. A full list is in Table 2.

• 12 bugs in Intel® ISPC. All of these have been �xed. Seven of them were compiler crashes
and �ve were miscompilation bugs. Seven were in a middle-end optimization and �ve in the
x86-64 backend. A full list is in Table 3.

• 16 bugs in the Intel® oneAPI DPC++ compiler. Nine were miscompilation bugs and seven
were compiler crashes. Nine were in a middle-end optimization, three in the x86-64 backend,
and four remain unclassi�ed. Intel® oneAPI DPC++ bugs were reported to a non-public bug
tracker.

• Two bugs in Intel® SDE and two bugs in Alive2.

Overview of reported bugs. We looked for patterns in the bugs that we found. Please note that
since our testing campaign ran over several years, during which we continued to develop YARPGen,
features that we added earlier were used in more test cases—so there are likely to be some biases in
these informal results.
In terms of the overall program structure, we determined that perfect loop nests of depth two

with unknown trip count were the most common bug trigger. We have reported bugs with bigger
loop depths (up to �ve), but their combined presence was roughly the same as that of depth two.
As for array access patterns, we found that slicing along one of the array dimensions was the
one that most commonly triggered bugs. We also found that the most buggy loop optimization
component of GCC was related to vectorization, whereas in LLVM instruction selection was the
buggiest component.
21% of the bugs we discovered were in a compiler backend, despite the fact that our target is

high-level loop optimizations. We believe that there are several factors involved here; for example,
in some cases middle-end optimizations open up additional possibilities for backend optimizations.
Also, loop optimizations such as vectorization are tied closely to the compiler’s backend, with
details such as the presence of masking being important. A dedicated testing campaign for compiler
backends [Boushehri et al. 2022; Rong et al. 2022] would almost certainly be more e�ective at
�nding backend bugs than our approach is. However, that kind of approach risks �nding less
relevant bugs due to generating non-canonical IR, whereas our approach always presents backends
with canonical IR that is emitted by a compiler middle end.

Duplicate GCC bug reports. In several cases, we found a recently-introduced GCC bug around the
same time that others reported it. For example, bugs #103119, #105621, and #106605 were reported
by compiler users. Additionally, another research group was running a similar compiler testing
campaign concurrently with ours, but using mutation-based test-case generation. They found GCC
bugs #103399, #106417, #107228, #108668 before we did. In all seven cases, we reported the bug
within two days of others having reported it. Also, one bug (#96693) was erroneously marked as a
duplicate despite the fact that we had reported it about a week earlier.

Impact of open-sourcing YARPGen. A minor complicating factor in our testing campaign is that
during it, we released YARPGen v.2 as open source software. We did this because we knew of
several individuals who were speci�cally interested in fuzzing loop optimizations, and we judged
that helping them (and others like them) out was more important than being the only users of our
tool. For example, Martin Liška, a GCC developer, reported eight bugs that he found using our tool,
including #101256. We did not know that they were using our tool, but we discovered this after the
fact and included their bugs in our list of GCC bugs. However, there may have been others using
YARPGen, who we did not know about.
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Table 1. YARPGen v.2 found 66 bugs in GCC, this table shows the latest 50 of them. “ICE” stands for “Internal
Compiler Error.” “ASGD” stands for “Assigned.” We shortened names of the components and bug descriptions.

# ID Status Type Component Description

1 95649 �xed ICE tree-opt ICE during GIMPLE pass: cunroll

2 95717 �xed ICE tree-opt ICE during GIMPLE pass: vect: verify_ssa failed

3 95916 �xed ICE tree-opt ICE during GIMPLE pass: slp : verify_ssa failed

4 96022 �xed ICE tree-opt ICE during GIMPLE pass: slp in operator[], at vec.h

5 96755 �xed ICE target ICE in �nal_scan_insn_1, at �nal.c with -O3 for skx

6 98048 �xed ICE tree-opt ICE in build_vector_from_val, at tree.c

7 98064 �xed ICE tree-opt ICE in check_loop_closed_ssa_def, at tree-ssa-loop-manip.c

8 98069 ASGD wrong code tree-opt Miscompilation with -O3

9 98211 �xed wrong code tree-opt Wrong code at -O3

10 98213 �xed timeout tree-opt Never ending compilation at -O3

11 98302 �xed wrong code target Wrong code on aarch64

12 98308 �xed ICE tree-opt ICE in vect_slp_analyze_node_ops, at tree-vect-slp.c

13 98381 �xed wrong code tree-opt Wrong code with -O3 -march=skx

14 98513 �xed wrong code tree-opt Wrong code with -O3

15 98640 �xed wrong code tree-opt GCC produces incorrect code with -O1 and higher

16 98694 �xed wrong code target Wrong code for loops with -O3 for skx and icx

17 99777 �xed ICE tree-opt ICE in build2, at tree.c with -O3

18 99927 �xed wrong code rtl-opt Wrong code

19 100081 �xed timeout tree-opt Compile time hog in irange

20 101014 �xed timeout tree-opt Big compile time hog with -O3

21 101256 �xed wrong code tree-opt Wrong code with -O3

22 102511 �xed wrong code tree-opt Wrong code for -O3: �rst element of the array is skipped

23 102572 �xed ICE tree-opt ICE for skx in vect_build_gather_load_calls, at tree-vect-stmts.c

24 102622 �xed wrong code tree-opt Wrong code with -O1

25 102696 �xed ICE tree-opt ICE in vect_build_slp_tree, at tree-vect-slp.c for skx and icx

26 102788 �xed wrong code tree-opt Wrong code with -O3

27 102920 �xed wrong code tree-opt Wrong code with -O3

28 103037 ASGD wrong code tree-opt Wrong code with -O2

29 103073 �xed ICE ipa ICE in insert_access, at ipa-modref-tree.h

30 103122 �xed ICE tree-opt ICE in �ll_block_cache, at gimple-range-cache.cc

31 103361 �xed ICE tree-opt ICE in adjust_unroll_factor, at gimple-loop-jam.c

32 103489 �xed ICE tree-opt ICE with -O3 in operator[], at vec.h

33 103517 �xed ICE tree-opt ICE in as_a, at is-a.h with -O2 -march=skx

34 103800 �xed ICE tree-opt ICE in vectorizable_phi, at tree-vect-loop.c with -O3

35 104551 �xed wrong code tree-opt Wrong code with -O3 for skx, icx, and spr

36 105132 �xed ICE tree-opt ICE in in operator[], at vec.h with -O3 for skx

37 105139 �xed wrong code target vmovw instruction with an incorrect argument for -O3 for spr

38 105142 �xed wrong code tree-opt Wrong code with -O2

39 105189 �xed wrong code tree-opt Wrong code with -O1

40 105587 �xed ICE target ICE in extract_insn, at recog.cc (error: unrecognizable insn)

41 106070 �xed wrong code tree-opt Wrong code with -O1

42 106292 �xed wrong code tree-opt Wrong code with -O3

43 106630 �xed ICE tree-opt ICE: Segfault signal terminated program cc1plus with -O2

44 106687 �xed wrong code tree-opt Wrong code with -O2

45 107404 �xed wrong code target Wrong code with -O3

46 108166 �xed wrong code tree-opt Wrong code with -O2

47 108365 ASGD wrong code c++ Wrong code with -O0

48 108647 �xed ICE tree-opt ICE in upper_bound, at value-range.h with -O3

49 109341 ASGD ICE ipa ICE in merge, at ipa-modref-tree.cc

50 109342 �xed wrong code tree-opt Wrong code with -O2
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Table 2. YARPGen v.2 detected 28 bugs in LLVM. “ICE” stands for “Internal Compiler Error.” “RES” stands for
“Resolved.” “CONFR” stands for “Confirmed.” We shortened names of the components and bug descriptions.

# ID Status Type Component Description

1 42819 �xed ICE Backend: X86 ICE: “Cannot select: X86ISD::SUBV_BROADCAST”

2 42833 �xed wrong-code Backend: X86 Incorrect result with -O3 -march=skx

3 46178 �xed ICE Backend: X86 Assertion ‘idx <size()’ in combineX86Shu�esRecursively

4 46471 new ICE new-bugs Assertion “Uses remain when a value is destroyed!”

5 46525 �xed ICE new-bugs Assertion ‘!verifyFunction(*L->getHeader()->getParent())’

6 46561 �xed wrong-code new-bugs Wrong code with -O1

7 46586 �xed wrong-code Backend: X86 Wrong code with -O2

8 46661 �xed ICE new-bugs InstCombine stuck in an in�nite loop after 100 iterations

9 46680 �xed ICE ScalarOpt InstCombine stuck in an in�nite loop after 100 iterations

10 46950 �xed ICE new-bugs UNREACHABLE at Transforms/Vectorize/LoopVectorize.cpp

11 47098 �xed ICE Opt Polly during “Polly - Forward operand tree” on skx

12 47292 RES ICE Opt ICE in polly with -O3

13 48326 �xed ICE Backend: X86 Assertion “Invalid child # of SDNode!”

14 48422 �xed ICE Opt Assertion “Unknown counts for blocks that dominate latch!”

15 48445 �xed ICE Opt Assertion “Partial READ accesses not supported”

16 48554 �xed ICE isl ICE: polly/lib/External/isl/isl_ast_build_expr.c

17 50109 �xed ICE Opt UNREACHABLE at Transform/ManualOptimizer.cpp

18 51797 new ICE new-bugs InstCombine stuck in an in�nite loop after 100 iterations

19 51798 �xed ICE LoopOpt Assertion ‘hasVectorValue(Def, Instance.Part)’

20 51906 new wrong-code LoopOpt LICM introduces load in writeonly function (UB)

21 51923 new ICE LoopOpt Clang segfaults with loop unroll(enable)

22 52002 new ICE new-bugs Assertion “Uses remain when a value is destroyed!”

23 52273 new ICE LoopOpt Assertion ‘!verifyFunction(*L->getHeader()->getParent())’

24 52335 new wrong-code Backend: X86 Incorrect result with -O1 -march=skx

25 52504 �xed ICE Backend: X86 Assertion “Cannot use this version of ReplaceAllUsesWith!”

26 52560 �xed ICE Backend: X86 Cannot select: t60: v8i16 = X86ISD::VZEXT_MOVL t55

27 52561 CONFR ICE Backend: X86 Assertion “Can’t BITCAST between types of di�erent sizes!”

28 58616 new ICE new-bugs Assertion “Expected vector-like insts only.”

Table 3. YARPGen v.2 detected 12 bugs in Intel® ISPC. “ICE” stands for “Internal Compiler Error.”We shortened
names of the components and bug descriptions.

# ID Status Type Component Description

1 1719 �xed ICE middle-end Division by zero leads to ICE

2 1729 �xed ICE middle-end Assertion failed: “ci != NULL”

3 1762 �xed ICE middle-end ICE: “scatterFunc != NULL”

4 1763 �xed wrong-code middle-end Wrong code for avx2-i64x4

5 1767 �xed ICE backend Assertion “Getting TableId on SDValue()”

6 1768 �xed wrong-code middle-end Uniform and varying types have di�erent rounding rules.

7 1771 �xed wrong-code backend Wrong code for avx2-i64x4

8 1788 �xed ICE middle-end InstCombine stuck in an in�nite loop after 1000 iterations

9 1793 �xed wrong-code backend Wrong code for avx2-i32x16

10 1806 �xed wrong-code middle-end ISPC produces wrong code with bool type iterator

11 1844 �xed ICE backend ICE: “Unexpected illegal type”

12 1851 �xed ICE backend LLVM assertion ‘Def == PreviousDef’ failed
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Speed of bug �xes in LLVM. Our testing campaign for LLVM did not go as well as the one for the
GCC. Following standard practices for responsible external bug-�nding, we avoided �ooding their
bug tracker with issues, and instead kept the number of outstanding bug reports under a small
limit. Alas, the LLVM developers often did not �x the issues that we reported very quickly, causing
us to report fewer such bugs than we otherwise could have.

Partial bug �xes. An interesting facet of running a fuzzing campaign is observing cases where a
fuzzer-triggered bug is �xed only incompletely. In a typical situation, the reported test case is �xed
but without fully addressing the root cause of the bug; in this case, YARPGen �nds other ways to
trigger the issue soon after the initial, incomplete �x lands. This happened six times for GCC bugs
during our testing campaign.

4.2 Covering Optimizations

A compiler fuzzer cannot �nd bugs in optimizations that it cannot trigger. Our loop generation
policy mechanism is explicitly designed to trigger more loop optimizations more often; in this
section we evaluate its ability to do that. We use optimization counters5 that the LLVM developers
have provided in order to evaluate our ability to trigger optimizations. These counters are, in e�ect,
a high-level, domain-speci�c code coverage metric.

Experimental setup. We threw out a number of counters that we judged to be irrelevant, including
those for counting experimental optimizations, for bookkeeping unrelated to optimizations, and for
counting optimizations that cannot be triggered from C or C++, such as those related to garbage
collection. To do this we extracted all 1,360 counters from the LLVM source code and manually
analyzed the resulting list in order to select those that we judged are related to loops, vectorization,
or are enabled by other loop optimizations. Some of these counters were easy to identify (e.g.,
loop-unroll.NumUnrolled and loop-vectorize.LoopsVectorized); others required looking
closely at the surrounding source code. In summary, we made a good-faith e�ort to pick a set of
optimization counters that actually count loop-related optimizations. There are 238 of these.
We used LLVM 15.0.36 as the basis for these experiments. We compare YARPGen’s ability to

trigger optimizations with that of a version of YARPGen where we disabled loop optimization
policies, and also with LLVM’s performance test suite.7 This suite can optionally include various
versions of the SPEC® CPU benchmark; we included SPEC® CPU2017 and con�gured it as directed
by the LLVM developers.8 For the benchmark suite, we simply compiled it and tallied up the
number of times each optimization counter was triggered. For YARPGen v.2 (both with and without
generation policies) we compiled randomly-generated programs over a 24-hour period using all
cores on a machine with two AMD™ EPYC 7502 32-core processors.

Results of comparing YARPGen with the benchmark suite. Out of our set of 238 optimization
counters, YARPGen v.2 (with generation policies) and the LLVM test suite, together, are able to
trigger 80 of them. Eight were exclusively triggered by the test suite. Thus, YARPGen v.2 is able to
test 90% of the optimizations that are triggered by the applications in LLVM’s test suite (including
SPEC® CPU2017).

Results of comparing YARPGenwith and without generation policies. Only one of the 72 loop-related
optimization counters (gvn.MaxBBSpeculationCutoffReachedTimes) was exclusively triggered
by YARPGen v.2 with generation policies, the rest were triggered by both versions. We used Welch’s

5This is our term; LLVM simply calls them “statistics.”
6https://github.com/llvm/llvm-project/releases/tag/llvmorg-15.0.3
7https://github.com/llvm/llvm-test-suite/releases/tag/llvmorg-15.0.3
8https://github.com/llvm/llvm-test-suite/tree/main/External/SPEC
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Table 4. Out of the 72 LLVM optimization counters that YARPGen v.2 can trigger, this table lists the most
loop-relevant ones, and reports the average ratio between how many times that counter is triggered with
generation policies (GP), as opposed to without them. For each of these counters, the data support the claim
that generation policies trigger that counter more o�en, at a 95% confidence level.

Opt. counter name GP to no GP ratio

licm.NumHoisted 10.29

licm.NumMovedCalls 3.48

licm.NumMovedLoads 20.31

licm.NumPromoted 12.34

licm.NumSunk 2.36

loop-delete.NumBackedgesBroken 2.04

loop-delete.NumDeleted 11.33

loop-idiom.NumMemSet 6.17

loop-instsimplify.NumSimpli�ed 5.61

loop-peel.NumPeeled 2.40

loop-rotate.NumInstrsDuplicated 6.11

loop-rotate.NumInstrsHoisted 2.24

loop-rotate.NumNotRotatedDueToHeaderSize 4.69

loop-rotate.NumRotated 6.02

loop-simplify.NumNested 5.22

loop-simplifycfg.NumLoopBlocksDeleted 4.31

loop-simplifycfg.NumLoopExitsDeleted 9.29

loop-simplifycfg.NumTerminatorsFolded 6.90

loop-unroll.NumCompletelyUnrolled 10.97

loop-unroll.NumRuntimeUnrolled 9.79

loop-unroll.NumUnrolled 10.67

loop-unroll.NumUnrolledNotLatch 5.99

loop-vectorize.LoopsAnalyzed 4.09

loop-vectorize.LoopsEpilogueVectorized 11.55

loop-vectorize.LoopsVectorized 32.42

t-test to put each triggered optimization counter into one of three categories. For the �rst one, we
can say with 95% con�dence that generation policies are better (YARPGen v.2 with them triggers
the counter more times than YARPGen v.2 without them); for the second category, we can say with
95% con�dence that generation policies are worse; for the last one, the null hypothesis that neither
version of YARPGen v.2 is better at triggering this particular counter. By this test, generation
policies are better for 71 counters; worse for none; and, for one counter (indvars.NumElimRem)
no conclusion can be drawn from our data. Table 4 shows a subset of these counters, along with
the ratio between how many times each is triggered with and without generation policies. The
geometric mean of this ratio across all 72 counters is 9.14. Overall, generation policies appear to be
an e�ective way to trigger loop optimizations more often.

4.3 Code Coverage

Absolute code coverage numbers, for a compiler like GCC or LLVM, are tricky to interpret because
these compilers support multiple source languages, multiple backends, and many con�guration
options. On the other hand, in controlled circumstances, relative code coverage numbers might
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Table 5. Coverage of GCC source code

Functions Lines Branches

YARPGen v.2 37.28% 34.96% 23.79%

SPEC® CPU 2017 44.84% 40.96% 27.96%

unit tests 79.51% 77.09% 55.94%

unit tests + YARPGen v.2 79.86% 78.16% 57.40%

unit tests + SPEC® 79.63% 77.45% 56.36%

unit tests + SPEC® + YARPGen v.2 79.93% 78.34% 57.62%

Table 6. Coverage of LLVM source code

Functions Lines Branches

YARPGen v.2 22.30% 12.61% 12.37%

test suite (includes SPEC® CPU 2017) 27.99% 16.31% 17.14%

unit tests 84.26% 89.93% 73.58%

unit tests + YARPGen v.2 84.27% 89.97% 73.76%

unit tests + test suite 84.27% 89.97% 73.77%

unit tests + test suite + YARPGen v.2 84.28% 89.99% 73.85%

provide useful information. We collected code coverage for the LLVM 15.0.39 and GCC 12.2.010

implementations for the following inputs:

(1) the unit test suite that is distributed with the compiler
(2) SPEC® CPU2017 v1.0.1 (for GCC only)
(3) the LLVM test suite, including SPEC® CPU2017 v1.0.1 (for LLVM only)
(4) 24 hours of random testing with YARPGen v.2 in its default con�guration, with the -O3

optimization �ag, on an AMD™ Ryzen 9 5950X 16-core processor

The results are presented in Tables 5 and 6. YARPGen v.2 does not improve the coverage by much,
nor does it provide very good coverage by itself. However, these results are in line with previously
reported code coverage due to generative random fuzzers (for example, Table 3 from the Csmith
paper [Yang et al. 2011] and Tables 8 and 9 from the YARPGen v.1 paper [Livinskii et al. 2020]).
Our view is that coverage of functions, lines, and branches are simply not very good metrics for
evaluating compiler fuzzers—the internal behavior of compilers is highly path- and value-sensitive.

4.4 Performance of YARPGen

We measured the CPU time used by each step in the random testing pipeline, when testing LLVM
15.0.3 and GCC 12.2.0 at their -O0 and -O3 optimization levels. YARPGen v.2 was used in its default
con�guration. The CPU usage was measured from the scripting infrastructure that drives random
testing, and it does not include the CPU time used by that infrastructure itself, but we do not
believe it to be signi�cant. We conducted this experiment on a machine with an AMD™ Ryzen 9
5950X 16-core processor, using all cores. The results are presented in Table 7. The majority of
processor time in this experiment, 77.7%, was spent in the compilers, and only 0.78% was spent in
YARPGen v.2. Thus, it is not a bottleneck during random testing.

9https://github.com/llvm/llvm-project/releases/tag/llvmorg-15.0.3
10https://gcc.gnu.org/gcc-12/
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Table 7. How CPU time is spent during random testing

Tool Step % of total CPU time

YARPGen v.2 generation 0.78%

gcc -O0 compilation 12.38%

execution 5.31%

gcc -O3 compilation 38.63%

execution 5.27%

clang -O0 compilation 7.63%

execution 5.47%

clang -O3 compilation 19.10%

execution 5.43%

5 FUTURE WORK

Making fuzzer specialization easier. As discussed in Section 3.2, generation policies need to be
implemented by hand. A better route to extending a generative fuzzer like YARPGen might be to
provide a domain-speci�c language for expressing generation policies. We have not yet pursued
this research agenda, but Xsmith [Hatch et al. 2023] is an example of work in that direction: it uses a
language speci�cation to generate a fuzzer that can incorporate sophisticated program-generation
techniques. However, it has not yet been applied to any domains that are as complex as generating
UB-free C++. Another interesting approach would be to use feedback, such as coverage of the
compiler under test, perhaps in combination with machine learning techniques, to automatically
infer generation policies.

Floating-point support. The oracle problem is the main obstacle to using fuzzers to look for
defects in compilers for languages that support IEEE �oating point operations. The most common
and interesting use case for FP optimizations, the “-ffast-math” compiler �ag, allows compiler
optimizations that lead to di�erent numerical results across di�erent compilers, platforms, and
optimization levels. This means that almost every test case will look buggy to a tool that strictly
applies di�erential testing. We experimented with an approach based on limiting the number of
FP operations in a dependency chain, and then also allowing the result to be within a range of
the expected result, before di�erential testing signaled a bug. This turned out to work poorly: the
chain-length restriction limited the fuzzer’s expressiveness, and coming up with an appropriate
range for the result was di�cult. We have come to believe that a much �ner-grained approach
that uses a formal methods tool to look at individual transformations performed by a compiler is
probably a better way to detect miscompilation of �oating point computations.

6 RELATED WORK

Compiler fuzzing has a long history; summary papers about compiler testing and fuzzing in
particular were published by Boujarwah and Saleh [1997] and by Chen et al. [2020]. In this section
we focus on prior work that potentially �nds the same kinds of errors as YARPGen v.2, or implements
mechanisms similar to generation policies; we brie�y survey other approaches.

Generative compiler fuzzing. Csmith, developed by Yang et al. [2011], used a combination of
whole program analysis and dynamic checks to avoid unde�ned behavior in generated tests. In
particular, dynamic checks were used to eliminate UB in arithmetic operations and array subscripts.
Subsequent research by Even-Mendoza et al. [2020, 2022] showed that wrapper functions impose a
noticeable penalty on the code coverage and bug-�nding ability of the fuzzer; this was one of the
main motivations for YARPGen’s preference for static UB-avoidance.
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CLsmith, developed by Lidbury et al. [2015], is a modi�ed version of Csmith that was created to
test OpenCL compilers. Its test cases include vector types, intra-group communication, and atomic
operations. Additionally, the developers supported equivalence modulo inputs [Le et al. 2014]—also
known as metamorphic testing—to further enhance the bug-�nding ability of CLsmith.

The Orange family of fuzzers pioneered the static UB avoidance approach, developing this idea
for generating branch-free scalar code using concrete value tracking, over a series of papers [Nagai
et al. 2012, 2013, 2014]. They subsequently developed two ways to extend this mechanism to loops.
The �rst one, created by Nakamura and Ishiura [2015], e�ectively unrolls the loop inside the
generator, analyzing all of its iterations. Any subexpression that causes UB at some iteration is
augmented with array addition to avoid UB. For example, if a[i] + b[i] causes signed over�ow
for some value of i, it is replaced with a[i] + (b[i] + tmp[i]), where tmp[i] is initialized with
zeroes except when a di�erent value is required to avoid UB. This approach scales poorly in the
presence of nested loops. Orange’s second loop extension, developed by Nakamura and Ishiura
[2016], allowed each loop to execute at most one iteration. Code generated by this approach is
logically loop-free, but this fact can be hidden from the compiler by making the loop induction
variable su�ciently opaque. YARPGen’s approach is similar to these, but improves upon them in
several ways. YARPGen v.1 [Livinskii et al. 2020] also extended the approach pioneered by Orange,
but most of the improvements were targeted at scalar code.

Mutation-based compiler fuzzing. Rather than generating test cases from scratch, the mutation
approach takes a seed program and modi�es it. This has advantages and disadvantages; in our view,
neither of these kinds of fuzzing subsumes the other. A family of mutation-based compiler fuzzers
developed by Zhendong Su’s research group [Le et al. 2014, 2015; Sun et al. 2016] holds the record
in terms of reporting the most bugs for GCC and LLVM.

Fuzzing compilers using machine learning. A recent trend in compiler fuzzing is incorporating
machine learning into the generator. This technique is not purely generative, since it requires
example programs for training purposes, but it does not �t cleanly into the mutation-based approach
either. For example, DeepFuzz, developed by Liu et al. [2019], uses the GCC test suite as training data;
82% of the generated programs are syntactically correct and can be compiled. DeepSmith, created
by Cummins et al. [2018], targets OpenCL compilers; it generates tests that contain unde�ned
or non-deterministic behavior, and uses compiler warnings and third-party tools to �lter them
out. A summary paper about application of machine learning techniques in fuzzing was published
by Wang et al. [2020]. This approach has a huge advantage: the structure of the generated programs
is inferred, rather than being painstakingly constructed by hand. However, it tends to produce
programs that are not compliant with the relevant standards; for example, UB-freedom is a global
property that, so far, appears to be out of reach of learned generators. Of course, depending on the
goals of a testing campaign, it might be desirable to present compilers with non-conforming inputs.
So far, machine-learning-based test case generators have not reached parity with hand-written
tools in terms of bug-�nding power.

Improving diversity in random test cases. An early approach to increasing the probability of
triggering compiler optimizations is due to Burgess and Saidi [1996]. Their fuzzer, which produced
FORTRAN tests, explicitly introduced common subexpressions, linear induction variables, and
arithmetic expression patterns that the optimizer was known to be looking for.

Another approach to increasing diversity of generated tests is swarm testing, introduced by Groce
et al. [2012]. The idea is to arti�cially change the probability of generating some program element
at the beginning of generating a test case. So one generated test might be completely free of
bitwise operators and another one might be dominated by them. YARPGen v.1 [Livinskii et al.
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2020] adapted these ideas and applied them in a �ne-grained way to its generation policies, which
controlled contexts such as what kind of operators to generate, helping it �nd hard-to-trigger bugs.
YARPGen v.2 builds directly on this idea, and expands it to loop optimizations and data-parallel
languages. As far as we know, our work is the �rst to directly target these kinds of optimizations.

7 CONCLUSION

YARPGen v.2 is an open-source11 generative fuzzer that can be used to �nd bugs in loop optimiza-
tions in compilers for C, C++, ISPC, and SYCL. Over a three-year period, it was able to detect
122 wrong code bugs and internal compiler errors; most of these have been �xed. Moreover, we
reported 13 GCC bugs that were independently rediscovered by users, showing that at least 20% of
the bugs we reported for GCC are of the kind that users actually encounter and then (typically)
triage and reduce in a painfully manual fashion.
The �rst contribution of this paper is a novel static unde�ned behavior avoidance mechanism

for loops that allows YARPGen v.2 to generate tests that are guaranteed to be compliant with
language standards. Moreover, this method is applicable to multiple languages; combined with our
syntax-independent IR, it allows us to target multiple languages with a single fuzzer. The second
contribution is a collection of loop-speci�c generation policies that increase the number of applied
loop and vector optimizations on average by 9.14 times for LLVM.
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